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Abstract 
A new set of resonances for electron cloud dynamics in 
the presence of a magnetic field has been found. For short 
beam bunch lengths and low magnetic fields where lb << 
2πc/ωc (with lb = bunch length, ωc = non-relativistic 
cyclotron frequency) resonances between the bunch 
frequency and harmonics of the electron cyclotron 
frequency cause an increase in the electron cloud density 
in narrow ranges of magnetic field near the resonances. 
For ILC parameters the increase in the density is up to a 
factor ≈ 3, and the spatial distribution of the electrons is 
broader near resonances, lacking the well-defined vertical 
density "stripes" found for non-resonant cases. 
Simulations with the 2D computer code POSINST, as 
well as a single-particle tracking code, were used to 
elucidate the physics of the dynamics.  The existence of 
the resonances has been confirmed in experiments at 
PEP-II. The resonances are expected to affect the electron 
cloud dynamics in the fringe fields of conventional lattice 
magnets and in wigglers, where the magnetic fields are 
low. Results of the simulations and experimental 
observations, the reason for the bunch-length dependence, 
and details of the dynamics are discussed here. 

INTRODUCTION 
Because of high bunch intensity and frequency, 

electron cloud effects are an important design issue in 
modern high-energy  accelerators with intense beams of 
positive charge, as well as in lower-energy accelerators of 
intense ion beams. As an example, in the International 
Linear Collider (ILC) bending of the beam in the positron 
damping ring will produce copious synchrotron radiation.  
This then will generate photoelectrons, which in turn 
create secondaries.  Without mitigation the resultant 
electron cloud would cause emittance growth and beam 
instability, limiting the average beam current. To quantify 
the cloud density and distribution for ILC damping ring 
parameters, we performed a series of computer 
simulations with the 2D computer code POSINST [1,2].  
Of interest was the area of the wiggler, where the 
magnetic field varies from zero to about 2 T.  Results 
showed that above a certain threshold in magnetic field 
magnitude, B, the cloud density calculated was a smooth 
function of B.  Below this threshold there were large (x3) 
increases in the density over very narrow ranges of B 
which had a strict periodicity.  This paper discusses and 
explains this enhancement of the electron cloud density 
and shows that it is due to resonances between the beam 
passage and the electron cyclotron frequency. 

SIMULATION MODEL 
Since POSINST is a 2D code, in order to simulate the 

wiggler a series of runs was done where each run 
approximated a transverse slice of the wiggler as a dipole 
(Bx=Bz=0, By constant).  Photon reflectivity was assumed 
to be unity—i.e., photoelectrons were formed in a 
distribution uniform in azimuthal angle.  Since the 
electrons are tied to field lines and therefore each only 
samples a limited region in x, this choice of reflectivity 
permitted investigation of the dynamics at all x. The 
physical and numerical parameters used in the simulations 
are shown in Table 1.   

The beam bunch density was assumed to be Gaussian 
in x,y, and z and centered in the circular vacuum 
chamber. The centroid motion due to the wiggler field 
was not included in the model.  The bunch distribution 
was not allowed to evolve during the simulation.  It is 
assumed that such evolution is negligible during the ~ 1 
µs of the cloud buildup.  All electrons were assumed to be 
formed either by photoionization or by secondary 
emission due to wall impact of the photoelectrons—
ionization of background gas was assumed to be 
negligible.  Further details of the model and results not 
shown here can be found in ref. [3]. 

 
Table 1: Parameters for all Simulations 

 
Bunch spacing, τb 6.15 ns  
σx   (beam) 112 µm 
σy   (beam) 4.6 µm 
σz   (beam) 6.0 mm 
Full bunch length ±2.5 σz 
Photons emitted per positron per meter 0.07 
Quantum efficiency 0.1  
Peak secondary electron yield at 
normal incidence 

1.4 

PIC spatial grid cell size 0.36 mm 
Integration Time Step 1.25 x 10-11 s 
Vacuum pipe radius, a 2.3 cm 

SIMULATION RESULTS 
As beam bunches pass a given location in the damping 

ring, the electron cloud builds up until the loss of 
electrons due to electron space charge repulsion balances 
their production, thus attaining an equilibrium value.  
Figure 1 shows the "equilibrium average density" for the 
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electron cloud as a function of n≡ωc/ωb, where ωc is the 
nonrelativistic electron cyclotron frequency and ωb=2π/τb, 
where τb is the time interval between passages of 
successive bunch centers.  Thus n∝B.  The equilibrium 
average density is the total number of electrons in the 
chamber at equilibrium divided by the chamber volume.  
Note that the "+" marks on the figure denote simulation 
results.  Lines are only provided to guide the eye.  A 
horizontal expansion of this graph shows that all peaks 
are at integral multiples of n, and at every integral value 
of n where a run was done the density was enhanced.  
Thus, if more runs had been done the peaks would be 
seen to be evenly spaced in n—areas where the peaks 
seem to be sparser simply reflect the fact that simulations 
were not done to outline all 100 peaks.   

 
Figure 1:  Equilibrium average density vs. n 

The spatial distribution of electrons is different at B 
values where the density is enhanced.  Figure 2 shows the 
density as a function of x and y for B=0.07 T (n=12) and 
B=0.08 T (n=13.8).  The density shown in the figure is 
integrated over the full time of the simulation, but since 
most of the simulation is spent during the equilibrium 
phase, it is weighted heavily toward this phase.  At 
n=13.8 the well-known vertical stripes of high-density are 
seen.  These form where the kick from the beam gives 
electrons an energy which is near the peak of the 
secondary electron yield vs. energy function.  But at n=12 
the electrons are much more evenly distributed (see [3] 
for a discussion of cause).  Thus, depending on photon 
reflectivity, at magnetic field values where n is integral 
the effect of the electron cloud on the beam and the power 
deposition by the electrons at the wall can be quite 
different from the well-known picture at nonintegral n.  

The fact that the electron density enhancement occurs 
when the cyclotron frequency is an integral multiple of 
the bunch frequency suggests that the increased density is 
due to a resonance between the appearance of the bunch 
and the position of an electron in its cyclotron orbit.  
Since the magnetic field is uniform in this problem, all 
electrons in the system have the same cyclotron 
frequency, unless they acquire enough energy for a non-
negligible relativistic mass increase.  Simulation data 
shows that such a mass increase occurs only for a very 

small fraction of the electron population.  For the rest, 
then, each time the beam appears the electron will be at 
the same position in its cyclotron orbit.  Note that for low 
B, in the range of the highest density peaks in Fig. 1, the 
time for the beam to pass an electron is much less than the 
cyclotron period, i.e., 
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where lb is the bunch length, c is the speed of light, and 
me is the electron mass.  Thus the electron experiences the 
force of the beam as essentially an instantaneous kick at 
one point in its gyro-orbit. The beam force is in the x-y 
plane-- z forces are negligible because the beam velocity 
is approximately c.  The y force accelerates the electron 
vertically, i.e., parallel to the magnetic field. The force in 
the x direction accelerates the electron in the plane of its 
cyclotron gyration, the x-z plane.  The direction of this 
force is toward the y axis so it will rotate the 
perpendicular (to B) component of the electron velocity 
toward this direction.  For the case of an intense beam 
like the ILC beam, it only requires a few kicks to align the 
electron velocity at the time of the bunch passages with 
the x component of the bunch electric field, after which 
the kick of each bunch will simply increase the 
perpendicular velocity.  The effect of the resonance, then, 
is to synchronize the phases of the electrons in their 
cyclotron motion, increase the perpendicular energy of 
the electrons, and thereby also increase the angle (to the 
normal of the surface) with which electrons hit the 
chamber wall as they travel along the B field lines.  The 
dependence of the secondary electron yield on the impact 
energy and angle is shown in Fig. 3.  From this it can be 
seen that both the increase in energy and the increase in 
the angle to the surface normal will increase the yield of 
secondary electrons.  This accounts for the density spikes 
of Fig. 1.  Figure 4 displays POSINST results showing the 
difference in electron energy spectrum and spectrum of 
the cosine of the impact angle for cases of B on and off 
resonance. 

  

 
Figure 2:  Density distribution for a resonant (0.07T) and 
non-resonant (0.08T) case.  Vacuum chamber is circular 
and fits exactly within the plot. 

 
Calculations without electron space charge were done 

to demonstrate the electron dynamics in a simpler system.  
The force of the beam was approximated by an 



instantaneous kick.  For resonant B values results did 
indeed show the phases of the electrons in their gyro- 

 
Figure 3:  Secondary electron yield vs. electron impact 
energy and angle to the surface normal for our 
parameters. 

 

 

 
Figure 4:  Spectra of impact energy and angle to the 
surface normal of electrons hitting the wall during cloud 
buildup for n=12 (red) and n=11.5 (black). 

orbits at the time of the bunches' arrival converging over 
time to lock into a direction parallel to the x component of 
the beam force.  The electron perpendicular energy 
increased, causing an increase in the mass and detuning of 

the gyrophase.  However this detuning occurred after 
several bunch passage times, by which time all but a few 
electrons had left the system.  In all respects the single 
particle calculations confirmed the description above of 
the dynamics of the resonance.   

As the magnetic field increases, the cyclotron 
frequency increases, and Eq. (1) is no longer valid.  The 
beam force now occurs over a significant portion of the 
cyclotron period.  Since the electron velocity is changing 
direction during the beam passage, the electron will be 
both accelerated and decelerated by the beam during that 
time, so that much of the effect of the beam in the 
perpendicular direction is cancelled.  This is the cause of 
the decrease of the density peak amplitude with 
increasing B in Fig. 1.  This was noted also in ref. [4]. 

Finally, we note that at low n the density peaks have a 
complicated structure, with a minimum near integral n, 
which disappears as n increases.  This is shown in Fig. 5. 
Electron statistics for a case near peak density at n=1.93 
were compared to those at n=2 in order to clarify the 
dynamics at low n.  The cloud buildup in both cases was 
similar, diverging only after space charge was significant.  
The presence of space charge made it difficult to see a 
simple explanation for the difference.  We do note, 
however, that electrons at n=2 on average stay in the 
system longer than those at n=1.93.  They thus attain 
higher energy.  But at n=1.93 the shorter confinement 
time of the electrons in the system, and thus higher impact 
rate at the wall, more than compensates for somewhat 
lower impact energy, so that more secondary electrons are 
produced.  Though the difference of confinement time 
accounts for the decline in cloud density at the resonance, 
we have no theory at this time which explains the 
longevity of electrons at different B field values. 

 
 

 
Figure 5:  Equilibrium average density vs. n for low n. 

 
A similar resonance to what is described above, though 

for ions, appears in ref. [5].  Because of the large ion 
gyroradius and two-species nature of that problem, 
however, the dynamics are somewhat different from those 
described here.   



ANALYTICAL MODEL 
A simplified analytical model of the electron dynamics 

can be used to derive many of the characteristics of the 
electron motion described above.  We make the following 
assumptions:  (1) the electrons remain non-relativistic, 
even at resonance, (2) space-charge forces and image 
forces from the vacuum chamber are neglected, (3) 
electron cyclotron radius << chamber radius, (4) 
σt<<2π/ωb, where σt is the RMS bunch duration; (5) we 
do not include electron motion which impacts the 
chamber walls, and (6) we restrict our attention to only 
those electrons with small vertical amplitude. The line 
charge density of the positron beam at time t and 
longitudinal location z is given by 
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where the summation is over successive bunches. While 
in a real accelerator the number of bunches is finite, the 
infinite upper limit in the above summation does not 
affect the results in the analysis that follows.  

The electric field generated by the beam is 
                  

! 

E(x,y,z,t) =
"(z,t)

4#$
0

G(x,y)                            (3)                             

where G(x,y), with dimensions of 1/length, is the 2-
dimensional Bassetti-Erskine field. The magnetic field B 
has an external component B=B

! 

ˆ y  plus the contribution 
generated by the beam, Bb ≈ –

! 

ˆ z  × E/c.  The contribution 
from this latter component to the v×B force is at most eβE 
(where β=v/c), hence down by a factor of � � relative to 
the electric force, hence negligible in magnitude 
compared to E.  Very near to the beam, especially for low 
values of the dipole field, the magnetic field of the beam 
will change the direction of the B field for the short time 
that a bunch is present.  This effect is not present in the 
POSINST calculations or in this analysis, and will be 
explored in future work.    

We first solve the equations of motion neglecting the 
field from the beam. The equations are then 

                              

! 

˙ v x ="vz

˙ v y = 0

˙ v z = #"vx

                                (4)  

where ω=eB/me. The solution in the x-z plane is  
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v f ,z = "#$0 sin(#t + %0)

v f ,x = +#$0 cos(#t + %0)
    (5) 

where the subscript "f" stands for "free" (i.e., in the 
absence of the beam). The gyroradius ρ0 is determined by 
the initial condition, ωρ0 = v⊥0, where v!0  is the initial 
speed in the x-z plane; φ0 is the initial phase.  The 
solutions for x and z are: 
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z f (t) = zc + "0 cos(#t + $0)

x f (t) = xc + "0 sin(#t + $0)
    (6) 

where (z c,xc) = (zf,0 - vf,x0/ω, xf,z0 + vf,z0/ω) is the gyrocenter 
in the (x-z) plane expressed in terms of the components of 

the velocity at t=0. As for the motion in y, it is free-
particle motion: vy=vy0 and y=y0+vy0t.  

From the original equations of motion we have: 
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Under our stated assumptions we can derive an 
approximation to this equation by setting x, y and z in the 
right-hand side to their values at t=0, keeping only the 
essential time dependence in the exponential factor. 
Without any loss of generality we choose z0=0, hence 
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which is the equation for a driven harmonic oscillator. We 
readily find vz = vf,z(t) + vd,z(t), where the free part, vf, is 
given by Eq. (6) and the driven part is given by  
     

! 

vd ,z (t) = "(t)# NbrecGx (x0,y0)A(K,n)sin$                 (9) 

where θ(t) is the conventional step function, 
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= e2/(4πε0mec2) ≈ 2.82×10–15 m is the classical radius of 
the electron, ξ=ωt-πnK, and the amplitude A is given by 
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To complete the derivation we note that 
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hence x(t) = x0 – (vz(t)-vz0)/ω. We obtain vx(t) = 
vf,x(t)+vd,x(t), where  
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vd ,x (t) = "(t)# NbrecGx (x0,y0)A(K,n)cos$              (11)  

and z(t) = zf (t)+zd (t) and x(t) = xf (t)+xd (t) where the 
driven parts are given by  
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The 1st-order equation for motion in y can be obtained 
in similar fashion, but it does not add much useful 
information to the discussion. One finds that those 
electrons for which the x component of the gyrocenter, xc, 
is comparable to or slightly smaller than the chamber 
radius a oscillate harmonically about y=0 with an angular 
frequency 
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but those electrons whose gyrocenter xc is within ~a/2 of 
the pipe center (x=0) are very unstable under the action of 
the beam, and are driven to the wall of the chamber 
within one to a few bunch passages (for the parameter 
values in Table 1).   

Equations (9), (11) and (12) are the basic result of this 
analysis. The amplitude A(K,n) is responsible for the 
linear growth in time of the motion whenever n = ωτb /2π 
is an integer, because in this case A(K,n)=K+1, which 



grows with time. Thus the driven component of the 
amplitude quickly dominates the motion, the initial phase 
φ0 and amplitude ωρ0 become irrelevant, and the phase of 
the horizontal velocity (Eqs. (9) and (11)) is uniquely 
determined by the beam driving force. One readily finds 
from Eqs. (9-11) also the synchronization of the electron 
cyclotron phase discussed in the last section.  For integer 
n, the electron energy therefore grows like |A|2~t2, 
explaining why in this case the electron-wall collision 
energy is larger than for non-integer n. Finally, if the 
bunch length is too large, or the B field too strong, the 
resonant growth of the amplitude is suppressed by the 
phase-averaging factor 
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/ 2  , as in  ref. [4]. 

 

EXPERIMENTAL OBSERVATION OF 
RESONANCES 

An experiment in a chicane at the PEP-II positron 
storage ring was used to observe the cyclotron 
resonances.  Details of the experiment can be found in ref. 
[6].  Each of three dipoles in the chicane was 
instrumented with a retarding field analyzer (RFA) 
located at the top of the vacuum chamber.  The RFA 
collectors were segmented in x into 17 stripes which 
could be biased in order to measure the electrons' vertical 
kinetic energy.  The vacuum wall was aluminum, but in 
the second dipole a TiN coating was used to decrease the 
secondary emission of the wall.  Results are shown in Fig. 
6.  Increases in density can be seen which are periodic in 
B, and their spacing is identical to what is expected for 
the resonances described above.  However there are 
complicated features not evident in the simulations (see 
ref. [6], Figs. 4 and 5).  For the aluminum surface, data 
from the collector stripe farthest from the beam (x=29 
mm) showed clear resonance peaks at the expected 
integer n values.  Collector stripes closer to the beam axis 
(x = 0), showed peaks with a double-spike structure. This 
effect was so severe that at x = ± 5 mm the signal 
enhancement had shifted to half-integer values of n. This 
was not observed for TiN-coated surface, where 
resonances occurred for integer n (at large n) for all  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Electron signal vs. strip collector number vs. n 
for aluminum surface showing increases in density due to 

resonances. 

collector stripes.  It is unknown at this point whether these 
complicated features are related to effects of the RFA or 
to something as yet undiscovered.  This is the subject of 
ongoing simulation and modeling studies.  The chicane 
experiment has been moved to Cornell University and 
installed at the CESR-TA.  Experiments and analysis will 
continue there in order to clarify these results. 

  COMMENTS & CONCLUSIONS 
We have shown that a resonance exists between the 

bunch passage and the electron cyclotron orbit motion 
which can increase the electron cloud density in a 
magnetic field.  The resonance is effective at low fields 
where the time for a bunch to pass an electron is small 
compared to the electron cyclotron period.  Observations 
at the electron cloud experiment at PEP-II clearly show 
these resonances, though the detailed structure of the 
peaks in density vs. magnetic field is quite complicated.  
This is the subject of ongoing study.   

We expect the resonances to be important in dipoles 
and perhaps in the low-field areas of magnetic wigglers.   
We are presently actively engaged in an investigation of 
the 3D nature of the electron dynamics in wigglers and its 
effect on the amplitude of the cloud enhancement. 
Simulations of this effect in wigglers are very challenging 
due to the extremely narrow width of the resonances. 

The degree of enhancement of the cloud density due to 
the resonances will depend on beam, secondary emission, 
and chamber parameters.  So far we have observed factors 
of a few for PEP-II and ILC e+ damping ring parameters.  
If the magnetic field regions of enhancement are periodic, 
however, then it is possible that a resonance with beam 
motion could develop, producing a more deleterious 
effect on the beam than what might be predicted from the 
simple quantitative increase in the cloud density.  A 
practical conclusion of this work is that dipole tuning 
should be done so as to avoid the resonances.  Clearly, 
however, whatever effect is present in wigglers will 
remain.  
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